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1. Introduction 

 The DM-VS™ employs a diffusion model as its core framework for wafer-level virtual 

data generation. Introduces the Denoising Diffusion Probabilistic Models (DDPM), which 

generate higher-quality silicon wafer data and overcome GAN limitations in multi-core chip 

performance features. Evaluating data distribution and quality with JS divergence and 

Fréchet Inception Distance (FID), the results show that the diffusion model accurately 

extracts feature distributions from silicon wafer data, generating numerous samples to 

support deeper analysis and accelerate the DTCO process. Compared to GAN, the diffusion 

model's generated wafers exhibit a data distribution closer to real data, with a JS divergence 

similarity of 0.987 and an FID of 6.28.  

2. Denoising Diffusion Probabilistic Model (DDPM) 

The Denoising Diffusion Probabilistic Model (DDPM) is a generative model that refines 

noisy samples into high-quality data by gradually removing noise. Widely successful in text 

and image generation, DDPM produces highly detailed and realistic results. Its core concept 

involves reversing the diffusion process, starting from noise samples and gradually 

correcting them to match real data distributions, yielding high-quality outputs. Fig. 1 

illustrates the DDPM process, which includes both the forward and reverse processes, each 

involving T steps.  

In the forward process, DDPM gradually adds Gaussian noise to the data, transforming 

it into a simpler distribution (usually Gaussian). This is done step by step, with the initial 

wafer sample 𝑤0 having noise added at each step, eventually turning into pure Gaussian 

noise 𝑤𝑇. The network learns how to add noise, enabling accurate predictions in the reverse 

process.  

In the reverse process, the model gradually reverses the forward process, recovering 

the original data distribution from the noisy samples. Specifically, the generation of the wafer 

begins with the noisy sample 𝑤𝑇, which is then input into the neural network along with the 

time step 𝑡=𝑇−1 to predict the noise added at the current step. Subsequently, the predicted 

noise is subtracted from 𝑤𝑇 to obtain 𝑤𝑇−1. This process is repeated for T steps, eventually 

transforming the noisy sample 𝑤𝑇 into a high-quality wafer sample 𝑤0. 
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Fig. 1 Forward and Reverse Processes of the Diffusion Model 

U-Net, commonly used for image segmentation and generation, has the structure shown 

in Fig. 2. The input passes through a convolutional layer to expand the channels to 16. The 

model contains two downsampling blocks that increase the channels to 64, followed by two 

upsampling blocks that restore the resolution while reducing the channels back to 16. A final 

convolutional layer generates the output with the desired dimensions. Fig. 3 provides further 

details of the ResNet block. 

 

Fig. 2 U-Net of Diffusion Model 

 

 



DTCO.VS DM-VS™ User Guide 

5 

 

Fig. 3 Illustration of a ResNet Block 

3. Diffusion Model Performance Evaluation 

Introduces wafer-level evaluation metrics in addition to chip-level analysis. Unlike chip-

level analysis, wafer-level focuses on chips from the same wafer, allowing for a more 

effective evaluation of whether the diffusion model successfully captures the complexity of 

the training data. This provides a more objective way to compare the data generated by the 

diffusion model with that generated by GAN.  

In image generation tasks, FID is commonly used to evaluate the quality and diversity of 

generated data relative to real data. A lower FID indicates that the generated data more 

closely resembles the real data, reflecting higher generation quality. The FID is calculated 

by passing both real and generated data through a pre-trained Inception-v3 model and 

comparing their feature distributions. Fig. 4 illustrates the process of transforming wafer data 

into the dimensions required for FID calculation. 
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Fig. 4 Data Shape Transformation for FID Evaluation 

3.1. Die-Level Analysis 

At the chip level, scatter plots compare the joint distributions of multiple features between 

real and generated data. Fig. 5 shows the scatter plots for four feature pairs generated by 

the diffusion model, where the generated data points closely match the real data points, 

demonstrating high similarity in their joint distributions. 

 

Fig. 5 Feature Scatter Plot for Diffusion Model Similarity 
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Fig. 6 shows the distribution of all feature values, with the JS divergence similarity indicated 

above each chart. In Fig. 6 (a), the GAN-generated distribution underperforms on features 

CP3, CP4, CP5, and CP6 due to the multiple peaks in their distributions. The mismatch in 

peak height and position leads to lower JS divergence similarity, and the GAN fails to capture 

the prominent peaks accurately. 

Fig. 6 (b) shows the diffusion model’s distribution, demonstrating its superiority in capturing 

the real distribution. For features CP3, CP4, CP5, and CP6, the diffusion model accurately 

reproduces the peak positions and heights. Specifically, for multi-core frequency 

performance features (CP3–CP6) with complex distributions like log or cosh, the GAN 

achieves a JS divergence similarity of 0.963, while the diffusion model improves this to 0.987, 

highlighting its superior performance on intricate distributions. 

 

Fig. 6 Feature PDFs of GAN (a) and Diffusion Model (b) 
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3.2. Wafer-Level Analysis 

At the wafer level, we assess the differences between adjacent chips along a specific 

direction to evaluate how well the spatial variations in the generated data match those in the 

real data. By calculating the average differences across wafers, we can quantify the 

similarity between real and generated data.  

For simplicity, this analysis focuses on the secant along the horizontal direction of the wafer, 

examining the average differences between adjacent chips in that direction. Fig. 7 shows 

the average difference analysis of CP1 and WAT1 generated by the GAN and diffusion 

model. The x-axis represents the horizontal coordinates, and the y-axis shows the average 

difference. The light blue area indicates one standard deviation range of the real data’s 

average difference, providing an intuitive comparison between generated and real data. 

 

Fig. 7 Feature PDFs of GAN (a) and Diffusion Model (b) 
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Fig. 7 (a) shows the average difference of CP1. For GAN-based methods, the generated 

data's average difference often falls outside the standard deviation range, with significant 

fluctuations indicating inaccurate patterns. In contrast, the diffusion model keeps the 

average difference consistently within the standard deviation range. Fig. 7 (b) shows similar 

results for WAT1, where GAN-generated data exhibits notable fluctuations, while the 

diffusion model captures the peak differences of real WAT1 data. The average difference 

from the diffusion model stays within one standard deviation of real data, showing similar 

spatial variations in both horizontal and vertical directions.  

Table I compares the FID (Frechet Inception Distance) of virtual wafers generated by GAN 

and the diffusion model to real data. The real data's FID is 1.39, calculated by splitting the 

wafer data into two equal parts. GAN's FID is 55.13, indicating difficulty in capturing multi-

modal distributions, while the diffusion model's FID is 6.28, closely matching real data and 

showing a significant improvement in generation quality. Overall, while GAN performs well 

on some features, it struggles with multi-modal distributions. The diffusion model accurately 

simulates real data's multi-feature distribution, with high consistency in chip distribution and 

horizontal secant differences. 

TABLE I: Quality Comparison of Generated Data 
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4. Virtual Silicon Data Format 

To ensure seamless integration and analysis within the DM-VS™, it is essential to 

understand the required data format for Chip Probing (CP) and Wafer Acceptance Test (WAT) 

data. The following sections outline the expected structures for data type: 

• File Type: ZIP and CSV. 

• Required Columns: 

o LWID: A distinctive identifier assigned to each generated wafer for tracking 

and analysis. (Lot Id. + Wafer No.) 

o X: Represents the horizontal coordinate, uniquely identifying the chip's 

position on the generated wafer. 

o Y: Represents the vertical coordinate, uniquely identifying the chip's position 

on the generated wafer. 

o Features: Measurement parameters (refer to TABLE II and Fig. 8). 

 

TABLE II: Generated virtual silicon features in the dataset. 

Feature Description Unit 
CP1 Leakage current μA 

CP2 Chip speed Hz 

CP3 Functional accuracy at 300MHz % 

CP4 Functional accuracy at 400MHz % 

CP5 Functional accuracy at 500MHz % 

CP6 Functional accuracy at 600MHz % 

WAT1 Gate threshold voltage of the low threshold NMOS V 

WAT2 Gate threshold voltage of the low threshold PMOS V 

WAT3 Gate threshold voltage of the ultra-low threshold NMOS V 

WAT4 Gate threshold voltage of the ultra-low threshold PMOS V 

WAT5 Drain current of the low threshold NMOS mA 

WAT6 Drain current of the low threshold PMOS mA 

WAT7 Drain current of the ultra-low threshold NMOS mA 

WAT8 Drain current of the ultra-low threshold PMOS mA 
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Fig. 8 CP + WAT Virtual Silicon Data Format. 
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5. Virtual Silicon Data Visualization 

 

Fig. 9 Demonstrations of (a) a wafer in the training data, and (b) a wafer generated by the 

diffusion model.  
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6. Technical Insights 

6.1. Describe the WAT Data Source 

ANS> 

In practice, unless the chip design company embeds a WAT test-key within the chip itself, 

only about 80 discrete test points (full-map) can be obtained during the pilot stage before 

mass production. After entering the mass production phase, the number of test data points 

provided by the foundry may significantly decrease, typically ranging from 9 to 13 points, 

and in some mature processes, it may be reduced to just 3 points. For example, in a 16nm-

like process (see Figure 10), high-resolution CP SIDD data reveals that even within the 

same shot (5×7 dies), there can be significant differences in the electrical characteristics of 

the chips. Therefore, insufficient WAT sampling may lead to biased conclusions, which in 

turn could affect decision-making accuracy. 

 

Fig. 10 Impact of Insufficient Data Sampling on Biased Generalization 

 

To effectively enhance decision-making confidence, we assume that the physical electrical 

characteristics near the test points are similar. Therefore, data augmentation can be 

performed using methods such as nearest-neighbor similarity or linear regression models, 

for example, expanding 13 points to over 80 points (full-map), as shown in Figure 11. 
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Fig. 11 Traditional WAT Feature Augmentation (Nearest and Linear Regression) 

 

In another case of a 6nm-like process for a CPU chip, data augmentation using a linear 

regression model can increase the data resolution by approximately 40 times, thereby 

enhancing confidence in dynamic data correlation tracking and parameter tuning. However, 

the linear regression model tends to generate false distributions, as seen in the orange circle 

on the right side of Figure 12. 

 

Fig. 12 Feature Augmentation with Regression Model 

 

The above issues can be addressed through MDV (Multi-Valued Dependency) or GMM 

(Gaussian Mixture Model). However, traditional modeling methods struggle to capture the 

large, non-random structural characteristics of wafer-level uniformity. As shown in Figure 13, 

in an example of a 16nm-like process, other CP characteristics (such as Power-Short and 

RO) also exhibit distinct spatial structural features. These system-level non-random 

uniformity structures are difficult to accurately capture with only a few discrete test points. 
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Fig. 13 CP Feature Uniformity 

 

As the number of WAT sampling points increases, the wafer-level uniformity structure 

becomes more clearly defined. For example, in another 16nm-like process case shown in 

Figure 14, test data from 80 points (full-map) gradually reveals the uniformity characteristics 

within the wafer. 

 

Fig. 14 WAT & CP Uniformity Correlation 

 

Improving WAT resolution is a topic worth in-depth research and optimization. As shown in 

Figure 15, the data augmentation method used in this study combines cubic regression and 

nearest-neighbor averaging to approximate the nonlinear structure of the wafer. The goal is 

to construct a network using a Diffusion-Model to generate near-realistic multidimensional 
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data while ensuring that the relationships between features remain highly consistent with 

the original data, rather than directly addressing the issues of ultra-high WAT resolution or 

DTCO (Design-Technology Co-optimization). 

 

Fig. 15 WAT Feature Augmentation in the Training Set 

 

Although these methods can visualize decision boundaries and enhance decision-making 

confidence, traditional regression methods often produce false distributions when modeling 

the nonlinear uniformity relationships at the wafer level. Therefore, accurately capturing the 

wafer-level uniformity structure and effectively improving WAT resolution is another critical 

area of focus. Our team is currently actively exploring promising solutions, but these will not 

be further discussed in this documentation. 

6.2. Why Choose LVT and ULVT Transistors for Low Power? 

ANS> 

The example used in this documentation is a high-speed computing chip (BTC) operating at 

the near-threshold voltage, with its core being ULVT. However, the focus of this study is not 

on the chip's characteristics themselves, but rather on how to observe the relationships 

between WAT and CP characteristic features in a multidimensional space through spatial 

coordinate alignment. For example, in some foundries, the impact of PMOS devices on chip 

leakage current is significant, prompting corresponding adjustments. As for which feature 

parameters should be selected for parameter tuning, voltage compensation, mass 

production strategies (binning), OCV evaluation, SPICE-Silicon correlation analysis, and 
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design sign-off methodology optimization, these are topics worthy of further research. 

The multidimensional distribution of real chip data is not a single Gaussian distribution but 

takes various forms of probability distributions, such as skew-normal, log-normal, log, 

catenary, and even combinations that include hyperbolic cosine (cosh) distributions. 

Furthermore, the relationships between high-dimensional parameters are not purely linear 

and cannot be perfectly modeled by GMM (Gaussian Mixture Model). Traditional data 

modeling methods often fail to capture the wafer-level uniformity structure, and this non-

randomness makes traditional design methods unreliable and overly pessimistic. 

This documentation aims to explore how to effectively solve the above issues using a simple 

GAN, while capturing the distributions, relationships, and uniformity structure in high-

dimensional space, making the generated virtual data more realistic and natural. However, 

GANs face limitations when handling non-Gaussian distributions such as double-logarithmic 

or hyperbolic cosine. The Diffusion-Model, on the other hand, can significantly improve this 

issue, further supporting the generation of higher-dimensional data and ensuring data quality. 

This method is not only applicable to the 16-dimensional data discussed in this 

documentation (including x, y), but can also be extended to more feature dimensions to 

enhance the overall modeling accuracy and applicability. 

6.3. State the VT/Id Being Applied 

ANS> 

The availability of WAT data varies by foundry. The features used in this documentation are 

defined as Vt saturation and Id saturation based on the foundry in this example. However, 

different foundries may have varying measurement methods and definitions. The purpose 

of this study is solely to demonstrate the application of the method and is not limited to the 

use of specific features. 
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7. Getting Started 

7.1. Beginner Users 

Access: Free download of one suitable sample from the website. 

Purpose: To explore and familiarize themselves with the system or product. 

7.2. Advanced Users 

 Access: Option to download 5 or 10 samples based on the chosen subscription plan. 

Purpose: To gain deeper insights or leverage additional resources for professional use.  

7.3. Custom Users 

 Access: Users requiring more samples are encouraged to contact us directly for  

customized solutions. 

8. Customer Support and Assistance 

For further assistance or to report any issues you may encounter, please reach out to our 

dedicated support team. Our team is committed to providing timely solutions and ensuring 

your experience with our system is seamless. 

Contact Information: 

• AnswerXpert QA Forum: http://172.17.20.61/post_message4.php 

• Operating Hours: Monday to Friday, 9:00 AM - 6:00 PM (GMT) 

Feel free to contact us with any questions, feedback, or concerns. We value your input and 

are here to help you resolve any challenges effectively. 

 

 

 


