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1. Introduction

The DM-VS™ employs a diffusion model as its core framework for wafer-level virtual
data generation. Introduces the Denoising Diffusion Probabilistic Models (DDPM), which
generate higher-quality silicon wafer data and overcome GAN limitations in multi-core chip
performance features. Evaluating data distribution and quality with JS divergence and
Fréchet Inception Distance (FID), the results show that the diffusion model accurately
extracts feature distributions from silicon wafer data, generating numerous samples to
support deeper analysis and accelerate the DTCO process. Compared to GAN, the diffusion
model's generated wafers exhibit a data distribution closer to real data, with a JS divergence
similarity of 0.987 and an FID of 6.28.

2. Denoising Diffusion Probabilistic Model (DDPM)

The Denoising Diffusion Probabilistic Model (DDPM) is a generative model that refines
noisy samples into high-quality data by gradually.removing noise. Widely successful in text
and image generation, DDPM produces highly detailed and realistic results. Its core concept
involves reversing the diffusion process, starting from noise samples and gradually
correcting them to match real data distributions, yielding high-quality outputs. Fig. 1
illustrates the DDPM process, which includes both the forward and reverse processes, each

involving T steps.

In the forward process, DDPM gradually adds Gaussian noise to the data, transforming
it into a simpler distribution (usually Gaussian). This is done step by step, with the initial
wafer sample w0 having noise added at each step, eventually turning into pure Gaussian
noise wT. The network learns how to add noise, enabling accurate predictions in the reverse

process.

In the reverse process, the model gradually reverses the forward process, recovering
the original data distribution from the noisy samples. Specifically, the generation of the wafer
begins with the noisy sample wT, which is then input into the neural network along with the
time step t=T-1 to predict the noise added at the current step. Subsequently, the predicted
noise is subtracted from wT to obtain wT—1. This process is repeated for T steps, eventually

transforming the noisy sample wT into a high-quality wafer sample wO.
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Fig. 1 Forward and Reverse Processes of the Diffusion Model

U-Net, commonly used for image segmentation and generation, has the structure shown
in Fig. 2. The input passes through a convolutionallayer to expand the channels to 16. The
model contains two downsampling blocks that increase the channels to 64, followed by two
upsampling blocks that restore the resolution while reducing the channels back to 16. Afinal
convolutional layer generates.the output with the desired dimensions. Fig. 3 provides further
details of the ResNetblock.
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Fig. 2 U-Net of Diffusion Model
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3. Diffusion Model Performance Evaluation

Introduces wafer-level evaluation metrics in addition to chip-level analysis. Unlike chip-
level analysis, wafer-level focuses on chips from the same wafer, allowing for a more
effective evaluation of whetherthe diffusion model successfully captures the complexity of
the training data. This provides a more objective way to compare the data generated by the

diffusion model with that'generated by GAN.

In image generation tasks, FID is commonly used to evaluate the quality and diversity of
generated data relative to real data. A lower FID indicates that the generated data more
closely resembles the real data, reflecting higher generation quality. The FID is calculated
by passing both real and generated data through a pre-trained Inception-v3 model and
comparing their feature distributions. Fig. 4 illustrates the process of transforming wafer data

into the dimensions required for FID calculation.
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Fig. 4 Data Shape Transformation for FID Evaluation

3.1. Die-Level Analysis

At the chip level, scatter plots compare the joint distributions of multiple features between
real and generated data. Fig. 5 shows the scatter plots for four feature pairs generated by

the diffusion model, where the generated data points closely match the real data points,

demonstrating high similarity in their joint distributions.
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Fig. 5 Feature Scatter Plot for Diffusion Model Similarity
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Fig. 6 shows the distribution of all feature values, with the JS divergence similarity indicated
above each chart. In Fig. 6 (a), the GAN-generated distribution underperforms on features
CP3, CP4, CP5, and CP6 due to the multiple peaks in their distributions. The mismatch in
peak height and position leads to lower JS divergence similarity, and the GAN fails to capture

the prominent peaks accurately.

Fig. 6 (b) shows the diffusion model’s distribution, demonstrating its superiority in capturing
the real distribution. For features CP3, CP4, CP5, and CP6, the diffusion model accurately
reproduces the peak positions and heights. Specifically, for multi-core frequency
performance features (CP3—CP6) with complex distributions like log or cosh, the GAN
achieves a JS divergence similarity of 0.963, while the diffusion model improves this to 0.987,

highlighting its superior performance on intricate distributions.
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Fig. 6 Feature PDFs of GAN (a) and Diffusion Model (b)

7



4
@ DIGWISE TECHNOLOGY

3.2. Wafer-Level Analysis
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At the wafer level, we assess the differences between adjacent chips along a specific

direction to evaluate how well the spatial variations in the generated data match those in the

real data. By calculating the average differences across wafers, we can quantify the

similarity between real and generated data.

For simplicity, this analysis focuses on the secant along the horizontal direction of the wafer,

examining the average differences between adjacent chips in that direction. Fig..7 shows
the average difference analysis of CP1 and WAT1 generated by the GAN and diffusion

model. The x-axis represents the horizontal coordinates, and the y-axisishows the average

difference. The light blue area indicates one standard deviation range of the real data’s

average difference, providing an intuitive comparison between generated and real data.
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Fig. 7 Feature PDFs of GAN (a) and Diffusion Model (b)
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Fig. 7 (a) shows the average difference of CP1. For GAN-based methods, the generated
data's average difference often falls outside the standard deviation range, with significant
fluctuations indicating inaccurate patterns. In contrast, the diffusion model keeps the
average difference consistently within the standard deviation range. Fig. 7 (b) shows similar
results for WAT1, where GAN-generated data exhibits notable fluctuations, while the
diffusion model captures the peak differences of real WAT1 data. The average difference
from the diffusion model stays within one standard deviation of real data, showing similar

spatial variations in both horizontal and vertical directions.

Table | compares the FID (Frechet Inception Distance) of virtual wafers generated by GAN
and the diffusion model to real data. The real data's FID is 1.39, calculated by splitting the
wafer data into two equal parts. GAN's FID is 55.13, indicating difficulty.in capturing multi-
modal distributions, while the diffusion model's FID is 6.28, closely. matching real data and
showing a significant improvement in generation quality. Overall, while GAN performs well
on some features, it struggles with multi-modal distributions. The diffusion model accurately
simulates real data's multi-feature distribution, with high consistency in chip distribution and

horizontal secant differences.

TABLE I: Quality Comparison of Generated Data

Metric GAN Diffusion model
Average JS divergence similarity 0.963 0.987
FID 55.13 6.28
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4. Virtual Silicon Data Format

To ensure seamless integration and analysis within the DM-VS™ it is essential to
understand the required data format for Chip Probing (CP) and Wafer Acceptance Test (WAT)

data. The following sections outline the expected structures for data type:
o File Type: ZIP and CSV.
« Required Columns:

o LWID: A distinctive identifier assigned to each generated wafer for tracking

and analysis. (Lot Id. + Wafer No.)

o X: Represents the horizontal coordinate, uniquely identifying the chip's

position on the generated wafer.

o Y: Represents the vertical coordinate, uniquely identifying the chip's position

on the generated wafer.

o Features: Measurement parameters (refer to TABLE Il and Fig. 8).

TABLE II: Generated virtual silicon features in the dataset.

Feature | Description Unit
CpP1 Leakage current HA
CP2 Chip speed Hz
CP3 Functional accuracy at 300MHz %
CP4 Functional accuracy at 400MHz %
CP5 Functional accuracy at 500MHz %
CP6 Functional accuracy at 600MHz %

WAT1 Gate threshold voltage of the low threshold NMOS Vv
WAT?2 Gate threshold voltage of the low threshold PMOS Vv
WAT3 Gate threshold voltage of the ultra-low threshold NMOS \%
WAT4 Gate threshold voltage of the ultra-low threshold PMOS \'%
WAT5 Drain current of the low threshold NMOS mA
WAT6 Drain current of the low threshold PMOS mA
WAT7 Drain current of the ultra-low threshold NMOS mA
WAT8 Drain current of the ultra-low threshold PMOS mA

10
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LWID X Y CPL Cr2 CP2 Cr4 CPS CPo WATL  WATZ ~ WAT2Z  WAT4A  WATS  WATE  WATT  WATS

genData-1 3 27 3741 2699161 415642 4540174 464529 430.347 0.127 0.123 0.043 0.075 4.448 40271 10,775 7.455)
genData-1 3 28 369 2769.0505 414792 455175 463871 423284 0.126 0123 0.047 0075 4.445 4033 10847 7465
genData-1 3 29 3899 2837.081 39638 443394 457458 424834 0.126 0.124 0.043 0.075 445 3.964 1032 7.499)
genData-1 3 0 3998 28482 422024 455.271 460276 397482 0.127 0.124 0.047 0075 4.395 3.967 10.84 7.506)
genData-1 3 3l 3474 2704473 445977 458.816 462205 413233 0.127 0.124 0.047 0.076 4.373 3958 10818 7.518
genData-1 3 2 3307 2701763 4524290 461.856 46052 220241 0.127 0.124 0.049 0.07% 4.352 3949 10742 7.519
genData-1 3 33 3312 2673831 450603 464007 451603 215344 0.127 0.123 0.043 0.076 4.387 397 10783 7.559
genData-1 3 24 3282 2671911 448199 462331 456.582 27068 0.127 0123 0.047 0.07% 4.366 3957 10992 7.5
genData-1 3 35 3124 2628331 447324 461937 44923 195471 0.127 0.123 0.043 0.076 4.393 3957 10728 7.520)
genData-1 3 6 2978 2612604 453462 46084 43785 147.732 0.128 0122 0.047 0.07% 4.377 3958 10741 7.539
genData-1 3 37 2957 2579061 449839 450419 442787 127.626 0.127 0.121 0.047 0.076 4.362 3858 1071 7.554
cenData-1 3 28 3054 2625559 TS50 463.512 452681 124029 0.128 0121 0.048 0.07% 4.358 3946 10673 7.505)
genData-1 3 39 4266 23908 442495 455201 452.206 191.388 0.127 0.121 0.047 0.075 4.389 3974 10148 7.511
cenData-1 3 40 3221 2511235 442528 45999 457661 121.853 0.128 0121 0.047 0.075 4.366 3956 10768 7497
genData-1 3 41 3092 2575501 443485 453556 460.591  214.117 0.128 0.122 0.047 0.076 4.337 3822 107z 7.481
cenData-1 3 42 3341 2540776 40223 424933 444301 300042 0.129 0.12 0.047 0.07% 4.336 401 10854 7482
genData-1 3 43 3.579 25156 443838 450,725 400.544  363.565 0.128 0.121 0.043 0.075 4.351 3.949 108 7.484
cenData-1 3 44 3804 2548631 443743 459.015 467971 31041 0.129 0122 0.048 0.07% 4.398 34974 10.82 7.504]
genData-1 3 45 3402 2343923 440,055 458.225 463.798  264.295 0.128 0.124 0.047 0.076 4.431 3811 10906 7513
cenData-1 3 46 30176 2228373 384894 393.103 352435 130.737 0.125 0.125 0.048 0.075 4.724 3963 10854 7.706)
genData-1 4 17 3.009 2146707 170892 215822 21077 96.017 0.126 0.123 0.049 0.075 4.661 3803 10741 7564
cenData-1 4 18 4276 2403186 421.754  451.038  464.898  360.905 0.128 0.125 0.049 0.075 4.586 396 10887 7.629
genData-1 4 19 3487 2506804 437044 4583939 461165 230047 0.128 0.12 0.043 0.076 4.427 3971 10782 7.577
cenData-1 4 20 3347 2521076 402128 405.949 410823 225.052 0.13 0.12 0.048 0.07% 4.375 398 10841 7.464]
genData-1 4 21 3.3 2555838 438773 459.233 45002 238413 0.128 0.122 0.043 0.075 4.386 3961 10,787 7.528
cenData-1 4 22 3227 2664797 437033 457475 462982 293.982 0.128 0122 0.048 0.075 4.39 3987 10844 7.495)
leenData-L 4 23 3478 2718018 442.005 460,602 463.308  342.820 0.128 0.123 0.043 0.075 4.424 3.979 10349 7473

Fig. 8 CP + WAT Virtual Silicon Data Format.
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5. Virtual Silicon Data Visualization
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Fig. 9 Demonstrations of (a) a wafer in the training data, and (b) a wafer generated by the

diffusion model.
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6. Technical Insights

6.1. Describe the WAT Data Source
ANS>

In practice, unless the chip design company embeds a WAT test-key within the chip itself,
only about 80 discrete test points (full-map) can be obtained during the pilot stage before
mass production. After entering the mass production phase, the number of test data points
provided by the foundry may significantly decrease, typically ranging from 9 to 13 points,
and in some mature processes, it may be reduced to just 3 points. For example, in a 16nm-
like process (see Figure 10), high-resolution CP SIDD data reveals_that even within the
same shot (5x7 dies), there can be significant differences in the electrical characteristics of
the chips. Therefore, insufficient WAT sampling may lead to biased conclusions, which in

turn could affect decision-making accuracy.

CP-WAT Mapping

u;urn: DVD G
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e 3
DD i

uuuuu
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Fig. 10 Impact of Insufficient Data Sampling on Biased Generalization

To effectively enhance decision-making confidence, we assume that the physical electrical
characteristics near the test points are similar. Therefore, data augmentation can be
performed using methods such as nearest-neighbor similarity or linear regression models,

for example, expanding 13 points to over 80 points (full-map), as shown in Figure 11.

13
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Fig. 11 Traditional WAT Feature Augmentation (Nearest and Linear Regression)

In another case of a 6nm-like process for a CPU chip, data augmentation using a linear
regression model can increase the data resolution by approximately 40 times, thereby
enhancing confidence in dynamic data correlation tracking and parameter tuning. However,
the linear regression model tends to generate false distributions, as seen in the orange circle

on the right side of Figure 12.
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Fig. 12 Feature Augmentation with Regression Model

The above issues can be addressed through MDV (Multi-Valued Dependency) or GMM
(Gaussian Mixture Model). However, traditional modeling methods struggle to capture the
large, non-random structural characteristics of wafer-level uniformity. As shown in Figure 13,
in an example of a 16nm-like process, other CP characteristics (such as Power-Short and
RO) also exhibit distinct spatial structural features. These system-level non-random

uniformity structures are difficult to accurately capture with only a few discrete test points.

14
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Power Short RO

Fig. 13 CP Feature Uniformity

As the number of WAT sampling points increases, the wafer-level. uniformity structure
becomes more clearly defined. For example, in another 16nm-like process case shown in

Figure 14, test data from 80 points (full-map) gradually reveals.the uniformity characteristics
within the wafer.

~(VEIN_UL+VtIP_UL) CP:PowerShort

CP:DIDD

mean surface of 25 wafers

Fig. 14 WAT & CP Uniformity Correlation

Improving WAT resolution is a topic worth in-depth research and optimization. As shown in
Figure 15, the data augmentation method used in this study combines cubic regression and
nearest-neighbor averaging to approximate the nonlinear structure of the wafer. The goal is

to construct a network using a Diffusion-Model to generate near-realistic multidimensional

15
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data while ensuring that the relationships between features remain highly consistent with
the original data, rather than directly addressing the issues of ultra-high WAT resolution or
DTCO (Design-Technology Co-optimization).

VTS_LVT_N

cubic 13 sites nearest averaged

(cubic + nearest)/2 as WAT grid data

Fig. 15 WAT Feature Augmentation:in the Training Set

Although these methods can visualize decision boundaries and enhance decision-making
confidence, traditional regression methods often produce false distributions when modeling
the nonlinear uniformity relationships at the.wafer level. Therefore, accurately capturing the
wafer-level uniformity structure and effectively improving WAT resolution is another critical
area of focus. Our team.is currently-actively exploring promising solutions, but these will not

be further discussed in this.documentation.

6.2. Why Choose LVT and ULVT Transistors for Low Power?
ANS>

The example used in this documentation is a high-speed computing chip (BTC) operating at
the near-threshold voltage, with its core being ULVT. However, the focus of this study is not
on the chip's characteristics themselves, but rather on how to observe the relationships
between WAT and CP characteristic features in a multidimensional space through spatial
coordinate alignment. For example, in some foundries, the impact of PMOS devices on chip
leakage current is significant, prompting corresponding adjustments. As for which feature
parameters should be selected for parameter tuning, voltage compensation, mass

production strategies (binning), OCV evaluation, SPICE-Silicon correlation analysis, and

16
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design sign-off methodology optimization, these are topics worthy of further research.

The multidimensional distribution of real chip data is not a single Gaussian distribution but
takes various forms of probability distributions, such as skew-normal, log-normal, log,
catenary, and even combinations that include hyperbolic cosine (cosh) distributions.
Furthermore, the relationships between high-dimensional parameters are not purely linear
and cannot be perfectly modeled by GMM (Gaussian Mixture Model). Traditional data
modeling methods often fail to capture the wafer-level uniformity structure, and this non-

randomness makes traditional design methods unreliable and overly pessimistic.

This documentation aims to explore how to effectively solve the above issues using a simple
GAN, while capturing the distributions, relationships, and uniformity structure in high-
dimensional space, making the generated virtual data more realistic'and natural. However,
GAN: s face limitations when handling non-Gaussian distributions such as double-logarithmic
or hyperbolic cosine. The Diffusion-Model, on the other hand, can significantly improve this
issue, further supporting the generation of higher-dimensional data and ensuring data quality.
This method is not only applicable to the 16-dimensional data discussed in this
documentation (including x, y), but can also be extended to more feature dimensions to

enhance the overall modeling accuracy.and applicability.

6.3. State the VT/Ild Being Applied

ANS>

The availability of WAT data varies by foundry. The features used in this documentation are
defined as Vt saturation and Id saturation based on the foundry in this example. However,
different foundries.may have varying measurement methods and definitions. The purpose
of this study is solely to demonstrate the application of the method and is not limited to the

use of specific features.

17
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7. Getting Started

7.1. Beginner Users

Access: Free download of one suitable sample from the website.

Purpose: To explore and familiarize themselves with the system or product.

7.2. Advanced Users

Access: Option to download 5 or 10 samples based on the chosen subscription plan.

Purpose: To gain deeper insights or leverage additional resources for professional use.

7.3. Custom Users

Access: Users requiring more samples are encouraged to.contact us directly for

customized solutions.

8. Customer Support and Assistance

For further assistance or to report.any issues you may encounter, please reach out to our
dedicated support team. Our team is committed to providing timely solutions and ensuring

your experience with our system'is seamless.

Contact Information:
o AnswerXpert QA Forum: http://172.17.20.61/post_message4.php
o Operating Hours: Monday to Friday, 9:00 AM - 6:00 PM (GMT)

Feel free to contact us with any questions, feedback, or concerns. We value your input and

are here to help you resolve any challenges effectively.
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